Плазмотрон

Плазмотрон.

 

Поделиться в:

 

Плазмотрон, именуемый также генератором плазмы – электротехническая конструкция, создающая плазму, используя высоковольтную дугу в разреженной газовой среде.

 

Краткая характеристика плазмотрона

Достоинства и преимущества плазмотронов

Конструкция плазмотрона

Виды и классификация моделей плазмотронов

Применение плазмотронов

Перспективы использования плазмотронов

 

Краткая характеристика плазмотрона:

Плазмотрон, именуемый также генератором плазмы – электротехническая конструкция, создающая плазму, используя высоковольтную дугу в разреженной газовой среде.

Практически любое вещество может находиться в твердом, жидком и газообразном агрегатном состоянии, в зависимости от воздействующей на него температуры. Даже твердые, в обычных условиях, предметы при сильном нагреве становятся жидкостью. Далее – газом, из атомов которого, при еще большем повышении температуры, начинают выпадать электроны, преобразуясь потом в ионы. Этой высокотемпературной газовой смеси дали название плазмы (четвертого состояния).

Первый опытный образец плазмотрона был создан в 50-х годах ХХ века, когда научились добывать тугоплавкие металлы. Для их обработки нужны были высокие температуры в ограниченных стесненных условиях, которые и смогли впоследствии воссоздать плазменные генераторы. А уменьшенным в разы вариантом разрядной камеры стала газовая горелка.

Полученным высокотемпературным потоком плазмы (15 000-30 000 0С и более) стали в основном обрабатывать и раскраивать материалы. Но у технологии появились и другие варианты применения. Например, плазмотроны начали выполнять функции мощных тепловых источников, помогающих получать ценные химические материалы.

 

Достоинства и преимущества плазмотронов:

– возможность создать сверхвысокие температуры, недостижимые при сгорании иного сырья,

– доступность регулировки мощности, запуска и завершения процесса,

– небольшие размеры и огромный КПД оборудования.

 

Конструкция плазмотрона:

Конструктивно плазмотрон представляет собой закрытую камеру. Ее внутренние токопроводящие стенки, выполняющие и роль анода, имеют внешнее водяное охлаждение на случай перегрева. Также роль анода может выполнять и сам материал, подлежащий обработке, но в этом случае он должен хорошо проводить электричество. Внутри камеры монтируется узел для подачи плазмообразующего газа (аргона, азота, водорода, метана, кислорода и др.). Катодом служит электрод из вольфрама или графита, устанавливаемый по ее центру.

Газ подается под давлением по спиральному каналу, чтобы подожженная струя на выходе оказалась максимально сжатой. Еще больше уплотняет горящий поток воздействующее на него индуктивное поле, создаваемое расположенным там же соленоидом или индуктивной катушкой.

Само сопло и катодный электрод относят к расходным материалам плазмотрона. Они отрабатывают одну рабочую смену (7-8 часов) и подлежат единовременной замене. Увы, существуют ограничения и по толщине раскраиваемого материала. Обычно это до 10 мм (у самых мощных моделей – до 20 мм).

 

Виды и классификация моделей плазмотронов:

Все серийно выпускаемые плазмотроны могут быть:

– электродуговыми,

– высокочастотными,

– комбинированными.

Также их разделяют в зависимости от следующих факторов:

– от воспроизводимой дуги – с прямым и косвенным воздействием;

– от подводимого тока – на переменные и постоянные;

– от охлаждения – с воздушным или водяным;

– от используемого электрода – с графитовым или вольфрамовым;

– от стабилизационной технологии потока плазмы – с газовой, водяной или магнитной стабилизацией.

Плазмотроны могут работать от инвертора или трансформатора (вторые более мощные), быть контактными и бесконтактными, бытовыми (220 V) и промышленными (380 V).

В электродуговых плазмотронах  с прямым воздействием газовая дуга зажигается от электрода к детали, в устройствах с косвенным воздействием – от электрода к выходной части сопла. За счет большого давления в камере и узкого отверстия сопла горящая плазма истекает из него со скоростью, в разы превосходящей скорость звука. Как правило, горелки дуговых плазмотронов оснащаются хоть одним катодом и одним анодом, запитываемых от источника постоянного тока.

В некоторых из них могут вращаться электроды либо образуемая ими дуга. Изредка применяются электролитические катоды, бериллиевые, циркониевые и гафниевые электроды. Для хорошей циркуляции охлаждающей жидкости в горелке создаются специальные каналы. Плазморезы могут работать как со средой защитных и окислительных газов, так и со специальными смесями. В зависимости от используемого топлива у них есть небольшие конструктивные отличия.

Высокочастотные плазмотроны работают на индуктивно-емкостном принципе, поэтому им не нужны аноды и катоды, им не нужен обязательный контакт электрической дуги с газом. Тут горелка становится своеобразным резонатором. Газ в ней поджигают непосредственно токи высокой частоты (ТВЧ), проходящие сквозь стенки камеры, созданные из непроводящих материалов. Производители горелок пользуются для этого закаленным кварцевым стеклом или керамикой, а их необходимую защиту от перегрева обеспечивает газодинамическая изоляция и воздушное охлаждение. Внутреннее строение такой горелки проще, она компактнее и легче, но может использоваться лишь для разрезания тонких материалов (до 3 мм).

Существуют сверхвысокочастотные (СВЧ) плазмотроны, использующие сверхвысокочастотный разряд в, проходящем через резонатор, газе.

В комбинированных плазмотронах нагнетаемый газ поджигается как токами высокой частоты, так и горящим дуговым межэлектродным разрядом. Кроме этого, выталкиваемая струя в них сжимается параллельным воздействием магнитного поля. У приборов очень большой спектр регулировки мощности, что существенно расширяет основной функционал данных моделей.

Для нормальной работы в любой из описанных горелок важно стабилизировать процесс истечения плазмы, максимально сжать ее и зафиксировать по оси отверстия сопла. Этого добиваются воздействием газа, воды либо магнитного поля. В первом случае горящий дуговой столб сжимается нагнетаемым внешним газом более холодной температуры, также участвующим в плазмообразовании. Во втором можно еще больше сжать плазменный столб, одновременно разогрев его до 50 000 0С и выше. Но водяные пары сжигают электрод намного быстрее. Магнитная стабилизация менее эффективна, но позволяет регулировать интенсивность плазменной струи и экономить используемый газ.

 

Применение плазмотронов:

Плазмотроны могут применяться:

– при сварке, резке и обработке металлов, а также различных твердотельных материалов,

– для расплавления и рафинирования (очистки) металлических сплавов,

– при нанесении защитных покрытий на металлические поверхности (керамики, электроизоляции и т.д.),

– для упрочнения дешевых материалов металлическим наплавом,

– для подогрева металлического расплава в мартеновских и плавильных печах,

– для термического обезвреживания высокотоксичной органики,

– для получения нанодисперсных порошков и соединений,

– при плазменной горной и шахтной проходке,

– при безмазутной растопке угольных котельных на электростанциях,

– и пр.

 

Перспективы использования плазмотронов:

Растущий интерес к оборудованию проявляют химики и авиастроители. В плазмохимии устройство может использоваться как для ускорения протекания многих реакций с увеличением их эффективности, так и для синтеза соединений различной сложности, получить которые раньше не удавалось. К примеру, при взаимодействии водородной плазмы с метаном легко получить ацетиленовое сырье, а введя в плазменный поток пары нефти, можно разложить их на органические производные.

Прибор, создающий плазменную струю, выбрасывает ее через сопло с огромной скоростью, а это может обеспечивать механическое движение. По аналогии строятся реактивные двигатели, но там выбрасываемую струю составляют горячие газы, скорость которых способна достигать нескольких км/сек. У плазмы она в десятки раз больше (от 10 до 100 км/сек). Значит и тягу можно получить во столько же раз мощнее, затратив на это значительно меньше топливной смеси. Первые испытания космических спутников с такой системой успешно завершились, проводятся дальнейшие работы.

 

Примечание: © Фото //www.pexels.com, //pixabay.com

 

плазмотроны для резки металла цены
купить ручной плазмотрон а141 гта 5 онлайн stm 120 td 300 дуговой металлургический
головка сопло электрод катод плазмотрона cs 141
плазмотрон или плазмотрон как правильно