Семиугольник, виды, свойства и формулы


Семиугольник, виды, свойства и формулы.

 

 

Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.

 

Семиугольник, выпуклый и невыпуклый семиугольник

Правильный семиугольник (понятие и определение)

Свойства правильного семиугольника

Формулы правильного семиугольника

Семиугольник в природе, технике и культуре

Шестиугольник, семиугольник, восьмиугольник

 




Семиугольник, выпуклый и невыпуклый семиугольник:

Семиугольник – это многоугольник с семью углами.

Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.

Семиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый семиугольник – это семиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Звёздчатый семиугольник – семиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого семиугольника могут пересекаться между собой.

Семиугольник, виды, свойства и формулы

Рис. 1. Выпуклый семиугольник

Семиугольник, виды, свойства и формулы

Рис. 2. Невыпуклый семиугольник

Сумма внутренних углов любого выпуклого семиугольника равна 900°.

Семиугольник_ф1

 


Правильный семиугольник (понятие и определение):

Правильный семиугольник – это правильный многоугольник с семью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный семиугольник – это семиугольник, у которого все стороны равны, а все внутренние углы равны 128 4/7° 128,571°.

Семиугольник, виды, свойства и формулы

Рис. 3. Правильный семиугольник

Правильный семиугольник имеет 7 сторон, 7 углов и 7 вершин.

Углы правильного семиугольника образуют семь равнобедренных треугольников.

Правильный семиугольник можно невозможно построить с помощью циркуля и линейки, но можно построить с помощью циркуля и невсиса, то есть размеченной линейки, на которой можно делать отметки и с помощью которой можно проводить прямые, проходящие через какую-нибудь точку, причём отмеченные на линейке точки будут принадлежать данным линиям (прямым или окружностям).

 


Свойства правильного семиугольника:

1. Все стороны правильного семиугольника равны между собой.

a1 = a2 = a3 = a4= a5 = a6 = a7. 

2. Все углы равны между собой и составляют 128 4/7° ≈ 128,571°.

α1 = α2 = α3 = α4 = α5 = α6 = α7 = 128 4/7° ≈ 128,571°.

Семиугольник, виды, свойства и формулы

Рис. 4. Правильный семиугольник

3. Сумма внутренних углов любого правильного семиугольника равна 900°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного семиугольника O.

Семиугольник, виды, свойства и формулы

Рис. 5. Правильный семиугольник

5. Количество диагоналей правильного семиугольника равно 14.

Семиугольник, виды, свойства и формулы

Рис. 6. Правильный семиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Семиугольник, виды, свойства и формулы

Рис. 7. Правильный семиугольник

 


Формулы правильного семиугольника:

Пусть a – сторона семиугольника, r – радиус окружности, вписанной в семиугольник,– радиус описанной окружности семиугольника, P – периметр семиугольника, S – площадь семиугольника.

Формулы стороны правильного семиугольника:

Формулы периметра правильного семиугольника:

Формулы площади правильного семиугольника:

Формулы радиуса окружности, вписанной в правильный семиугольник:

 

Семиугольник в природе, технике и культуре:

В некоторых странах, например, в Великобритании, некоторые монеты имеют правильную криволинейную семиугольную форму.

Некоторые виды кактусовых имеют форму звездчатого семиугольника.

 

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Шестиугольник

Восьмиугольник

 

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 





Найти что-нибудь еще?










Похожие записи:



карта сайта