Прямоугольный треугольник, свойства, признаки и формулы


Прямоугольный треугольник, свойства, признаки и формулы.

 

 

Прямоугольный треугольник – это треугольник, в котором один угол прямой (то есть составляет 90°).

 

Прямоугольный треугольник (понятие, определение)

Признаки равенства прямоугольных треугольников

Свойства прямоугольного треугольника

Формулы прямоугольного треугольника

Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник

 




Прямоугольный треугольник (понятие, определение):

Прямоугольный треугольник – это треугольник, в котором один угол прямой (то есть составляет 90°).

Сторона, противоположная прямому углу, называется гипотенузой. Гипотенуза (с греч. ὑποτείνουσα – «натянутая») – это самая длинная сторона прямоугольного треугольника, противоположная прямому углу.

Стороны, прилегающие к прямому углу, называются катетами. Катет (с греч. κάθετος – «перпендикуляр, опущенный, отвесный») – одна из двух сторон прямоугольного треугольника, образующих прямой угол.

Для непрямоугольного треугольника гипотенуза и катеты не существуют.

Рис. 1. Прямоугольный треугольник

Рис. 1. Прямоугольный треугольник

АВ, АС – катеты прямоугольного треугольника, ВС – гипотенуза прямоугольного треугольника, ∠ ВАС = 90°

Равнобедренный треугольник может быть прямоугольным (равнобедренным прямоугольным треугольником).

Равнобедренный прямоугольный треугольник — это треугольник, являющийся одновременно равнобедренным и прямоугольным. В этом треугольнике каждый острый угол равен 45°.

 


Признаки равенства прямоугольных треугольников:

Признаки равенства прямоугольных треугольников основаны и вытекают из общих признаков равенства треугольников.

1. Равенство по двум катетам.

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.

Рис. 2. Равенство прямоугольных треугольников по двум катетам

Рис. 2. Равенство прямоугольных треугольников по двум катетам

АВ = А1В1, АС = А1С1

2. Равенство по катету и прилежащему острому углу.

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 3. Равенство прямоугольных треугольников по катету и прилежащему углу

Рис. 3. Равенство прямоугольных треугольников по катету и прилежащему углу

АВ = А1В1, ∠АВС = ∠А1В1С1

3. Равенство по гипотенузе и острому углу.

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 4. Равенство прямоугольных треугольников по гипотенузе и острому углу

Рис. 4. Равенство прямоугольных треугольников по гипотенузе и острому углу

ВС = В1С1, ∠АВС = ∠А1В1С1

4. Равенство по гипотенузе и катету.

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

Рис. 5. Равенство прямоугольных треугольников по гипотенузе и катету

Рис. 5. Равенство прямоугольных треугольников по гипотенузе и катету

ВС = В1С1, АС = А1С1 

5. Равенство по катету и противолежащему острому углу.

Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 6. Равенство прямоугольных треугольников по катету и противолежащему острому углу

Рис. 6. Равенство прямоугольных треугольников по катету и противолежащему острому углу

АС = А1С1, ∠АВС = ∠А1В1С1

 


Свойства прямоугольного треугольника:

1. В прямоугольном треугольнике сумма двух острых углов равна 90°.

2. В прямоугольном треугольнике катет, лежащий против угла в 30° , равен половине гипотенузы.

И наоборот, если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Рис. 7. Прямоугольный треугольник с острым углом 30˚

Рис. 7. Прямоугольный треугольник с острым углом 30˚

b = c / 2

3. Теорема Пифагора:

Сумма квадратов катетов равна квадрату гипотенузы.

c2= a2+ b2​​ ,

где a, b – катеты, c – гипотенуза.

Рис. 8. Прямоугольный треугольник

Рис. 8. Прямоугольный треугольник

4. В прямоугольном треугольнике центр описанной окружности – есть середина гипотенузы.

И соответственно радиус описанной окружности (R) равен половине гипотенузы.

 ,

где c – гипотенуза.

                         Рис. 9. Прямоугольный треугольник и описанная окружность         

                         Рис. 9. Прямоугольный треугольник и описанная окружность         

5. В прямоугольном треугольнике медиана, падающая на гипотенузу, равна половине гипотенузы.

 Рис. 10. Прямоугольный треугольник и медиана, падающая на гипотенузу

 Рис. 10. Прямоугольный треугольник и медиана, падающая на гипотенузу

АМ – медиана прямоугольного треугольника, падающая на гипотенузу, АМ = ВМ = МС, АМ = ВС/2

6. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника подобные исходному.

Рис. 11. Прямоугольный треугольник и высота, проведенная из вершины прямого угла

 Рис. 11. Прямоугольный треугольник и высота, проведенная из вершины прямого угла

АВ/ВС = АН/АС = ВН/АВ

 


Формулы прямоугольного треугольника:

Пусть a и b – длины катетов прямоугольного треугольника, с – длина гипотенузы прямоугольного треугольника, h – высота прямоугольного треугольника, проведенная к гипотенузе (АН), R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 9, 11, 12).

Формулы сторон прямоугольного треугольника (a, b, c) по теореме Пифагора:

c2= a2+ b2 ,

a2= c2​ – b2 ,

b2= c2 – a2 ​.

Формула радиуса вписанной окружности (r):

 .

Рис. 12. Прямоугольный треугольник и вписанная окружность

Рис. 12. Прямоугольный треугольник и вписанная окружность

Формула радиуса описанной окружности (R): 

.

Формулы площади (S) прямоугольного треугольника: 

 .

Формулы высоты (h)прямоугольного треугольника:

.

 

Квадрат

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Ромб

 

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 





Найти что-нибудь еще?










Похожие записи:



карта сайта