Сероводород, свойства, получение и применение

Сероводород, свойства, получение и применение.

 

Поделиться в:

 

Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.

 

Сероводород, формула, молекула, строение, состав, вещество

Видеоурок “Сероводород”

Физические свойства сероводорода

Получение сероводорода

Химические свойства сероводорода. Химические реакции (уравнения) сероводорода

Применение сероводорода

 

Сероводород, формула, молекула, строение, состав, вещество:

Сероводород (сернистый водород, сульфид водорода, дигидросульфид) – бесцветный газ со сладковатым вкусом с характерным неприятным тяжёлым запахом тухлых яиц (тухлого мяса).

Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.

Химическая формула сероводорода H2S.

Строение молекулы сероводорода, структурная формула сероводорода:

Сероводород, свойства, получение и применение

Сероводород – наиболее активное из серосодержащих соединений.

Сероводород тяжелее воздуха. Его плотность составляет 1,539 кг/м3, по отношении к воздуху – 1,19. Поэтому скапливается в низких непроветриваемых местах.

@ https://youtu.be/RYZkPRGcc0k

Сероводород плохо растворяется в воде. Раствор сероводорода в воде – очень слабая сероводородная кислота. Хорошо растворим в бензоле, этаноле, бромэтане, гексане, додекане, октане, толуоле, трихлорэтилен, хлорбензоле.

Термически устойчив при температурах менее 400 °C. При температурах более 400 °C разлагается на составляющие – простые вещества: водород и серу.

В отличие от воды, в сероводороде не образуются водородные связи, поэтому сероводород в обычных условиях не сжижается.

Сероводород является сверхпроводником при температуре 203 К (-70 °C) и давлении 150 ГПа.

Сероводород коррозионно активен, поэтому предъявляются дополнительные требования при разработке нефтяных, газовых и газоконденсатных месторождений, содержащий сероводород.

Чрезвычайно огнеопасен. Смеси сероводорода и воздуха взрывоопасны. Возможно возгорание на расстоянии. Горит синим пламенем.

Соли сероводородной кислоты (раствор сероводорода в воде) называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок в ходе химических реакций. Многие сульфиды ярко окрашены. Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь, молибденит).

Сероводород в природе встречается редко, в незначительных количествах в составе природного газа, попутного нефтяного газа, сланцевого газа, а также в вулканических газах, в растворённом виде – в нефти, сланцевой нефти и в природных водах. Например, в Чёрном море слои воды, расположенные глубже 150-200 м, содержат растворённый сероводород (концентрация 14 мл/л).

Образуется при гниении белков, которые содержат в составе серосодержащие аминокислоты метионин и (или) цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных.

Сероводород высокотоксичен и ядовит. Предельно допустимая концентрация (ПДК) сероводорода в воздухе населенных пунктов в России – 0,008 мг/м3, в России – 0,007 мг/м3.

Порог ощутимости запаха составляет 0,012-0,03 мг/м3. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц» и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус. При вдыхании воздуха с большой концентрацией из-за паралича обонятельного нерва запах сероводорода почти сразу перестаёт ощущаться.

При острых отравлениях возникает жжение и боль в горле при глотании, конъюнктивит, одышка, головная боль, головокружение, слабость, рвота, тахикардия, возможны судороги. Смертельная концентрация составляет 830 мг/м3 в течение 30 минут или 1100 мг/м3 в течение 5 минут.

При высокой концентрации сероводорода однократное вдыхание может вызвать мгновенную смерть.

 

Физические свойства сероводорода:

Наименование параметра: Значение:
Химическая формула H2S
Синонимы и названия иностранном языке hydrogen sulfide (англ.)

водород сернистый (рус.)

водорода сульфид (рус.)

сероводородная кислота (рус.)

Тип вещества неорганическое
Внешний вид бесцветный газ
Цвет бесцветный
Вкус сладковатый
Запах неприятный тяжёлый запах тухлых яиц (тухлого мяса)
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (состояние вещества – твердое вещество, при -195 °C), кг/м3 1217
Плотность (состояние вещества – твердое вещество, при -195°C), г/см3 1,217
Плотность (состояние вещества – твердое вещество, при -86 °C), кг/м3 1120
Плотность (состояние вещества – твердое вещество, при -86 °C), г/см3 1,12
Плотность (состояние вещества – жидкость, при -81 °C), кг/м3 938
Плотность (состояние вещества – жидкость, при -81 °C), г/см3 0,938
Плотность (состояние вещества – газ, при 0 °C), кг/м3 1,539
Плотность (состояние вещества – газ, при 0 °C), г/см3 0,001539
Температура кипения -60 °C (213 K, -76 °F)
Температура плавления -82 °C (191 K, -116 °F)
Температура разложения, °C выше 400
Температура вспышки -82,4 °C (190,8 K, -116,3 °F)
Температура самовоспламенения 232 °C (505 K, 450 °F)
Критическая температура*, °C 100,4
Критическое давление, МПа 9,01
Критический удельный объём,  м3/кг 349
Взрывоопасные концентрации смеси газа с воздухом, % объёмных 4,3 – 46
Молярная масса, г/моль 34,082
Растворимость в воде, г/100 г вода: 0,699 (при 0 °C),
вода: 0,379 (при 20 °C),
вода: 0,233 (при 40 °C),
вода: 0,146 (при 60 °C),
вода: 0,041 (при 90 °C)
Растворимость в этаноле, г/100 г этанол: 3,44 (при 0 °C),
этанол: 2,3 (при 10 °C),
этанол: 1,43 (при 20 °C)
Стандартная энтальпия образования ΔH -21 кДж/моль (при 298 К, для состояния вещества – газ)
Стандартная энергия Гиббса образования ΔG -33,8 кДж/моль (при 298 К, для состояния вещества – газ)
Стандартная энтропия вещества S 205,7 Дж/(моль·K) (при 298 К, для состояния вещества – газ)
Стандартная мольная теплоемкость Cp 34,2 Дж/(моль·K) (при 298 К, для состояния вещества – газ)
Энтальпия плавления ΔHпл 2,38 кДж/моль
Энтальпия кипения ΔHкип 18,67 кДж/моль (для состояния вещества – жидкость)
Энтальпия испарения ΔHисп 14,08 кДж/моль (при 25 °C, для состояния вещества – жидкость)
Диэлектрическая проницаемость 8,99 (при -78 °C)
Константа диссоциации кислоты pKa 6,89 (при 25 °C),

19±2 (при 25 °C)

Скорость звука 1497 м/с (при -76°C, состояние вещества – жидкость)
Магнитный тип Диамагнитный материал
Молярная магнитная восприимчивость -25,5·10-6 см3/моль  (при 298 K, состояние вещества – газ)
Сверхпроводимость -70 °C, давление 150 ГПа

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

 

Получение сероводорода:

Сероводород в лаборатории получают в результате следующих химических реакций:

  1. 1. взаимодействия разбавленных кислот с сульфидами, например, с сульфидом железа.
  1. 2. взаимодействия сульфида алюминия и воды:

Al2S3 + 6H2O → 2Al(OH)3 + 3H2S.

Данная реакция отличается чистотой полученного сероводорода

 

Химические свойства сероводорода. Химические реакции (уравнения) сероводорода:

Основные химические реакции сероводорода следующие:

1. реакция взаимодействия сероводорода и брома:

H2S + Br2 → 2HBr + S.

В результате реакции образуются бромоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.

2. реакция взаимодействия сероводорода и йода:

H2S + I2 → 2HI + S.

В результате реакции образуются йодоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.

3. реакция взаимодействия сероводорода и кислорода:

2H2S + O2 → 2S + 2H2O.

В результате реакции образуются сера и вода. Реакция протекает медленно на свету, в растворе или в газовой фазе. Сероводород в ходе реакции используется в виде насыщенного раствора.  На данной реакции основан промышленный способ получения серы.

4. реакция горения сероводорода:

2H2S + 3O2  2SO2 + 2H2O (t = 250-300 °C).

В результате реакции образуются оксид серы и вода. Реакция горения сероводорода на воздухе.

5. реакция взаимодействия сероводорода и озона:

H2S + O3 → SO2 + H2O.

В результате реакции образуются оксид серы и вода. Сероводород в ходе реакции используется в виде газа.

6. реакция взаимодействия сероводорода и кремния:

Si + 2H2S → SiS2 + 2H2 (t = 1200-1300 °C).

В результате реакции образуются сульфид кремния и водород.

7. реакция взаимодействия сероводорода и цинка:

H2S + Zn → ZnS + H2 (t = 400-800 °C).

В результате реакции образуются сульфид цинка и водород.

8. реакция взаимодействия сероводорода и алюминия:

2Al + 3H2S → Al2S3 + 3H2 (t = 600-1000 °C).

В результате реакции образуются сульфид алюминия и водород.

9. реакция взаимодействия сероводорода и галлия:

2Ga + H2S → Ga2S + H2.

В результате реакции образуются сульфид галлия и водород.

10. реакция взаимодействия сероводорода и молибдена:

Mo + 2H2S → MoS2 + 2H2 (t > 800 °C).

В результате реакции образуются сульфид молибдена и водород.

11. реакция взаимодействия сероводорода и бария:

Ba + H2S → BaS + H2 (t > 350 °C).

В результате реакции образуются сульфид бария и водород.

12. реакция взаимодействия сероводорода и магния:

Mg + H2S → MgS + H2 (t = 500 °C).

В результате реакции образуются сульфид магния и водород.

13. реакция взаимодействия сероводорода и германия:

Ge + H2S → GeS + H2 (t = 600-800 °C).

В результате реакции образуются сульфид германия и водород.

14. реакция взаимодействия сероводорода и кобальта:

Co + H2S → CoS + H2 (t = 700 °C).

В результате реакции образуются сульфид кобальта и водород.

15. реакция взаимодействия сероводорода и серебра:

2Ag + H2S → Ag2S + H2.

В результате реакции образуются сульфид серебра и водород.

16. реакция взаимодействия сероводорода и оксида лития:

Li2O + H2S → Li2S + H2O (t = 900-1000 °C).

В результате реакции образуются сульфид лития и вода.

17. реакция взаимодействия сероводорода и оксида цинка:

ZnO + H2S → ZnS + H2O (t = 450-550 °C).

В результате реакции образуются сульфид цинка и вода.

18. реакция взаимодействия сероводорода и оксида железа:

FeO + H2S → FeS + H2O (t = 500 °C).

В результате реакции образуются сульфид железа и вода.

19. реакция взаимодействия сероводорода и оксида молибдена:

MoO2 + 2H2S → MoS2 + 2H2O (t = 400 °C).

В результате реакции образуются сульфид молибдена и вода.

20. реакция взаимодействия сероводорода и гидроксида натрия:

H2S + 2NaOH → Na2S + 2H2O.

В результате реакции образуются сульфид натрия и вода. В ходе реакции используется концентрированный раствор гидроксида натрия.

21. реакция взаимодействия сероводорода и гидроксида бария:

Ba(OH)2 + H2S → BaS + 2H2O.

В результате реакции образуются сульфид бария и вода. В ходе реакции используется разбавленный раствор сероводорода.

22. реакция взаимодействия сероводорода и гидроксида меди:

Cu(OH)2 + H2S → CuS + 2H2O.

В результате реакции образуются сульфид меди и вода. В ходе реакции используется насыщенный раствор сероводорода и гидроксид меди в виде суспензии.

23. реакция взаимодействия сероводорода и азотной кислоты:

H2S + 2HNO3 → S + 2NO2 + 2H2O.

В результате реакции образуются сера, оксид азота и вода. В ходе реакции используется насыщенный раствор сероводорода и концентрированный холодный раствор азотной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.  

24. реакция взаимодействия сероводорода и карбоната кальция:

CaCO3 + H2S → CaS + H2O + CO2 (t = 900 °C).

В результате реакции образуются сульфид кальция, оксид углерода и вода.

25. реакция взаимодействия сероводорода и карбоната бария:

BaCO3 + H2S → BaS + CO2 + H2O (t = 1000 °C, kat = H2).

В результате реакции образуются сульфид бария, оксид углерода и вода.

26. реакция взаимодействия сероводорода и карбоната натрия:

H2S + Na2CO3 → NaHS + NaHCO3 (t = 1000 °C, kat = H2).

В результате реакции образуются гидросульфид натрия и гидрокарбонат натрия. В ходе реакции используется насыщенный раствор сероводорода.

27. реакция взаимодействия сероводорода и нитрата серебра:

2AgNO3 + H2S → Ag2S + 2HNO3.

В результате реакции образуются сульфид серебра и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.

28. реакция взаимодействия сероводорода и нитрата висмута:

2Bi(NO3)3 + 3H2S → Bi2S3 + 6HNO3.

В результате реакции образуются сульфид висмута и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.

29. реакция взаимодействия сероводорода и нитрата свинца:

Pb(NO3)2 + H2S → PbS + HNO3.

В результате реакции образуются сульфид свинца и азотная кислота. Данная реакция является качественной реакцией на сероводород. В результате реакции образуются соль свинца – сульфид свинца черного цвета, который выпадает в осадок.

30. реакция термического разложения сероводорода:

H2S → H2 + S (t = 400-1700 °C).

В результате реакции образуются водород и сера. В ходе реакции используется насыщенный раствор сероводорода.

 

Применение сероводорода:

Из-за своей токсичности сероводород находит ограниченное применение:

– в аналитической химии сероводород и сероводородная вода используются как реагенты для осаждения тяжёлых металлов, сульфиды которых очень слабо растворимы;

– в медицине в составе природных и искусственных сероводородных ванн, а также в составе некоторых минеральных вод;

– в химической промышленности для получения серной кислоты, элементной серы, сульфидов;

– в органическом синтезе для получения тиофена и меркаптанов.

В последние годы рассматривается возможность использования сероводорода, накопленного в глубинах Чёрного моря, в качестве энергетического (сероводородная энергетика) и химического сырья.

 

Источники:

  1. https://ru.wikipedia.org/wiki/Сероводород
  2. https://en.wikipedia.org/wiki/Hydrogen_sulfide
  3. http://chemister.ru/Database/properties.php?dbid=1&id=818

Примечание: © Фото https://www.pexels.com, https://pixabay.com.

Видео https://youtu.be/RYZkPRGcc0k